Image segmentation for automatic particle identification in electron micrographs based on hidden Markov random field models and expectation maximization.
نویسندگان
چکیده
Three-dimensional reconstruction of large macromolecules like viruses at resolutions below 10 A requires a large set of projection images. Several automatic and semi-automatic particle detection algorithms have been developed along the years. Here we present a general technique designed to automatically identify the projection images of particles. The method is based on Markov random field modelling of the projected images and involves a pre-processing of electron micrographs followed by image segmentation and post-processing. The image is modelled as a coupling of two fields--a Markovian and a non-Markovian. The Markovian field represents the segmented image. The micrograph is the non-Markovian field. The image segmentation step involves an estimation of coupling parameters and the maximum á posteriori estimate of the realization of the Markovian field i.e, segmented image. Unlike most current methods, no bootstrapping with an initial selection of particles is required.
منابع مشابه
Unsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملUnsupervised Texture Image Segmentation Using MRFEM Framework
Texture image analysis is one of the most important working realms of image processing in medical sciences and industry. Up to present, different approaches have been proposed for segmentation of texture images. In this paper, we offered unsupervised texture image segmentation based on Markov Random Field (MRF) model. First, we used Gabor filter with different parameters’ (frequency, orientatio...
متن کاملHMRF-EM-image: Implementation of the Hidden Markov Random Field Model and its Expectation-Maximization Algorithm
In this project1, we study the hidden Markov random field (HMRF) model and its expectation-maximization (EM) algorithm. We implement a MATLAB toolbox named HMRF-EM-image for 2D image segmentation using the HMRF-EM framework2. This toolbox also implements edge-prior-preserving image segmentation, and can be easily reconfigured for other problems, such as 3D image segmentation.
متن کاملGMM-Based Hidden Markov Random Field for Color Image and 3D Volume Segmentation
In this project1, we first study the Gaussian-based hidden Markov random field (HMRF) model and its expectationmaximization (EM) algorithm. Then we generalize it to Gaussian mixture model-based hidden Markov random field. The algorithm is implemented in MATLAB. We also apply this algorithm to color image segmentation problems and 3D volume segmentation problems.
متن کاملUnsupervised Image Segmentation using Tabu Search and Hidden Markov Random Field Model
We propose a Tabu search based Expectation Maximization (EM) algorithm for image segmentation in an unsupervised frame work. Hidden Markov Random Field (HMRF) model is used to model the images. The observed image is considered to be a realization of Gaussian Hidden Markov Random Field (GHMRF) model. The segmentation problem is formulated as a pixel labeling problem. The GHMRF model parameters a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of structural biology
دوره 145 1-2 شماره
صفحات -
تاریخ انتشار 2004